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Abstract. Explicit analytic calculations conceming transport coefficients are presented for a 
relativistic magnetired and collisional plasma, especially at moderately-relativistic (IO keV < 
kT S 1 GeV) and ulm-relativistic (kT > 1 GeV) temperature limits covering up to Planck's 
scale. Transpon coefficients. such as electrical resistivity (an)  and thermal conductivity (m). 
except the thermoelectric coefficient (An), however, strikingly decrease with increase in thermal 
energy (kT), paniculnrly in a moderately-relativistic temperature limit, whereas in an ultra- 
relativistic temperature regime the trend is similar, although it is rather more drastic. Our results 
are of importance for understanding mllisional transport processes occuning in asvOphysid 
situations and labomtory diagnostic experiments. 

1. Introduction 

Small angle binary collisions of long-range inverse square types of force have been 
formulated to some extent [l-31. They largely emphasize the importance of the Fokker- 
Planck collisional term in the fluid description of relativistic magnetoplasma. However, 
the specific solution of the relativistic Boltzmann transport equation or Fokker-Planck 
equation, to derive various transport coefficients of interest in appropriate temperature limits, 
has never been attempted. Van Erkelens and Van Leeuwen [4] formulated the relativistic 
transport equation in covariant forms and analytically predicted transport coefficients in 
the form of manifold I-integrals. Likewise, Gottal and Gaviel [5] discussed the covariant 
description of the behaviour of the test particle in a relativistic plasma and have gone 
on at length to show that binary collisions do contribute significantly to diffusion tensors. 
Their analysis illustrates that in an anisotropic and totally-ionized plasma the Cerenkov 
emission is hardly noticed. Furthermore, Van Leeuwen et al [6], while addressing the 
relativistic kinetic theory in covariant form relevant to cosmology, have revealed that the 
collision operator is independent of the magnetic field. In the same manner, their Coulomb 
logarithm term appears to be independent of the magnetic field or gyrofrequency, to explain 
the astrophysical and magnetized plasma phenomena. 

In this paper, we report purporttdly the specific solutions of the scattered flux integrals 
inherent in the relativistic Boltzmann transport equation and the consequent formulations 
encountered in binary collisions concerning a fully-ionized, singly-charged, two component 
(electron, ion) plasma species, having diffusion across a magnetic field B(0, 0, B )  [7]. 
The novel features of the methodology, relying on relativistic formulation and analytic 
evaluation of the collision scattered flux integrals in terms of modified Bessel functions, 
and its recursion do represent significant innovation on technicalities. In addition, the 

0305470/95/205709+12$19.50 @ 1995 IOP Publishing Ltd 5709 



5710 

definite improvements of our work include the features conceming the relativistic and ultra- 
relativistic results on the transport coefficients. We equally incorporate physical explanations 
of new features of the above transport coefficients in the temperature limits of interest. To 
be precise, the Coulomb logarithm feature has been considered properly to account for the 
magnetic field strength limits. 

It has been exemplified that our formula for electrical conductivity qualitatively 
approaches that of Li and Petrasso [SI in the vanishing limit of the reciprocal of In Ab suitable 
for weakly-coupled plasmas. The classical expression is easily recovered by introducing 
the appropriate mass ratio approximation in the collision frequency, i.e. the ions equilibrate 
among themselves at a rate ri;' < re;' and hence the term (m- /m+) ' lZ  appears and leads to 
the appropriate electrical conductivity. However, owing to their Fokker-Planck formalism, 
which includes cumulative small angle collision effects in a non-magnetic electron plasma, 
numerical mismatch is somewhat apparent. The more interesting and innovative attribute of 
the present analysis is that it clearly derives the diffusion transport coefficients suitable for 
all temperature regimes, i.e. non-relativistic, weakly- or moderately-relativistic and ultra- 
relativistic thermal regimes, in the form of a complete analytic evaluation for the first time. 
Ameliorating the early analyses, which do not describe appropriately the quantized and 
relativistic formulation, we first deal with the problem valid for a fully-ionized plasma, in a 
semiclassical treatment relevant to the relativistic theory. We further propose to extend the 
present work to include correct quantum plasma analysis, by way of a quantized relativistic 
Dirac equation or the correct Lagrangian formulation, to account for the plasma in high- 
energy elementary particle processes. 

The present kinetic model is intrinsically relevant to the study of plasmas especially 
in moderately-relativistic and ultra-relativistic temperature limits. The former limit can 
describe plasmas commonly encountered in fusion devices, while the latter case is relevant to 
astrophysical situations including interplanetary space plasmas, radiogalaxies, pulsar winds 
or jets, pulsar magneto-spheres, sporadically exploding black holes and the ultra-relativistic 
plasma particles linked with the Big-Bang explosion covering Planck's scale. 

In our relativistic collisional kinetic model we choose an equilibrium distribution 
function f$ valid for a weakly coupled (ion, electron) plasma [2,3] and an appropriate 
Coulomb logarithm (log(Z/&) = log(hD/hc) independent of magnetic field. Here hi, is 
the conventional Debye length and hc is the corresponding classical distance of closest 
approach. However, for a strong magnetic field, we include the magnetic field term ( E )  in 
the Coulomb logarithm expression, as prescribed in Bernstein and Baxter [2], and, likewise, 
electrostatic shielding is equally taken into account [9, IO]. 

We discuss the dependence of the transport coefficients on the strength of the magnetic 
field embedded in the modified Coulomb logarithm both qualitatively and quantitatively 
[2,9, lo]. Our analysis reveals that for low density plasma (N = IOl3  ~ m - ~ ) h ~ / h c  c h ~ / h c  
only when B c IO4 G, which can be very easily regarded as a weak or moderate field. 
Note that ha(= ( k T / m ) ' / z ( m c / e B ) )  symbolizes the mean gyration radius of the particle 
species. Thus for a low-density plasma both in a weak and moderate magnetic field the 
Coulomb logarithm is independent of magnetic field term. However, in the case of the 
strong magnetic field, i.e. B 2 lo4 G, it is imperative to take an appropriately modified 
Coulomb logarithm as discussed below. In a strong magnetic field the ratio Ai,/hc t 1 ~ / h c  
and consequently we include the Coulomb logarithm IOghG/k, which is dependent on the 
magnetic field. In addition, following Schram [9] and O'Neil [ 101, we also equally include 
the appropriate. Coulomb logarithm to account for electrostatic shielding (loghi,/k) in 
a strong magnetic field. The prefactor as indicated in equation (B.4) of [IO] is already 
contained in our collision integral. 
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Our unique results reveal that in the moderately-relativistic temperature regime, the 
electrical resistivity and thermal conductivity register a diminishing profile with increasing 
temperature, and these quantities increase significantly with the increase in the dimensionless 
physical quantities z and z' [ll-141. However, in the ultra-relativistic temperature limits 
these coefficients behave similarly, but the changes are more drastic. Note that our formula 
for electrical conductivity in the limit of moderately-relativistic temperature only approaches 
that of Van Erkelens and Van Leeuwen 11.51 by putting n3 = 0 in their ternary model. In 
addition, we derive specific ready-to-use formulae for the E x B drift velocity, electrical 
resistivity, thermoelectric coefficient and thermal conductivity for all the three important 
temperature regimes. We believe that the present paper embodies all thermal regimes that 
have significant geophysical and global applications of natural plasmas, and the explicit 
binary interaction phenomena in both weak and strong magnetic field limits, for the first 
time. Our unified formalism covering all regimes definitely demonstrates some sort of 
superiority, in a realistic and observational sense, of laboratory diagnostics and simulations. 

The paper is organized as follows. Section 2 contains the kinetic equations and the 
relativistic formulation leading to appropriate calculations, whereas in section 3, the transport 
coefficients are derived analytically. Section 4 and 5 relate to the limiting thermal regimes: 
non-relativistic and weakly- or moderately-relativistic approximations and ultra-relativistic 
limits, respectively, 

2. Kinetic equation 

A fully-ionized, singly-charzed, two-component (electron, ion) relativistic collisional plasma 
confined in a magnetic field B can be described by the relativistic Boltzmann transport 
equation 121 

where the index '+' stands for ion species and '-' stands for electron species. The 
relativistic factor is given by y = (1 + ( VZ/C2) ) ' / * ,  z) = p / m .  Furthermore the Boltzmann 
collision integral C's are given in the form, 

C++-=- \d 'v '~ lw - u ' l \ d Q ~ ~ - [ f c ( z ,  z),t)f-(z,z)',t)-f+(z, v~,t)f-(z, vi,f)l. 

(2) 

Similar expressions can also be written for C-,+ and C-- accordingly. Note that the U$,- 
stands for the Moller scattering cross section, which can be defined by 

e4 1 
4y2m2u4 sin4(e/2) 

where the reduced mass is defined: m = m+m-/(m+ + m-) and the relative velocity 
U = f - 5. In a conventional way [2] z) i s  defined as the momentum divided by the rest 
mass, and U, U' appearing in the bracketed terms of equation (2) correspond to the velocities 
of the colliding particles, whereas U I ,  U; correspond to the velocities of the product particles. 

It is further instructive to choose a properly normalized equilibrium distribution function 
in relativistic Maxwellian form [2], 

0;c = 
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where the plasma is chosen under isothermal (T+ N T- = T) and quasineutrality conditions 
( N +  N N- = 1 p . N  = J f$d3u). Kz(z*) is a Bessel function of the second kind with 
argument z* where z* = m*c2/kT. In addition to this, we assume that, conventionally, 
the collision frequency t - I  is much smaller than the relativistic gyration frequency 

J N Mohanty and K C Baral 

m' = eB/ym*c. 

The magnetic field B is taken along the z-direction. The electric field E is induced 
owing to the motion of the diamagnetic plasma. While we choose E along the y-direction, 
there exists a small temperature gradient V(RT) and a small density gradient V(N) along 
the x-direction. It is further instructive to introduce the total zero-order pressure as 

which on evaluation in velocity space yields P = NkT. 
Further, following Schram 191 and O'Neil [IO], we incIude both the strong magnetic field 

conditions ( B  > 104 G) and the Debye shielding criteria and modify the Coulomb logarithm 
accordingly. Thus, in the case of a strong magnetic field, equation (2 )  needs to include, 
for sake of evaluation, the following: (i) a prefactor containing log(A&,); and likewise to 
account for the other parallel part for electrostatic shielding, (ii) an approximation leading 

The distribution function f is expanded in a familiar way [7,12,13] in terms of two 
smallparametersCY(=AG(l/N)aN/ax) andB(= l /or) ,as  f = f o + f i  and fi = f O + f i l .  

Regarding a collision as a perturbation to zero order in ,9, the transport equation for ion 
species takes the form [9] 

to b&b/hc). 

which yields 
1 a f& = - f + U  -log j:. 

u + ~  yax 

To a first order in CY and first order in fl, equation (1) reduces to 

where the linearized collision integral C&- is written as 

C&-(z, 'U, r) = - d3u'lv - 'U'I dQu$[f:,'cz, 'U, r)f;(z, 'U', t )  + f&(zl, U, t )  I / 
xfo-(z. v'. t) - f:(z. 'Ul,l)f&, U;, 1 )  - f;(z, VI, of;(", U;, 01. (7) 

Similar expressions can also be written for C&+ and C,. Next, we add these two 
expressions, i.e. Cz- and C&+, and rearrange them by using equations (5) and (3) to 
get 

where the symbol @ denotes the velocity space integral as defined by 
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+f,’(v’) /dQuL+A(mfv + m-d) 

+ f,’(w‘) / d!2u$+A(m+2&v + m+Zc2yv’) . 11’ 
On further substituting the above value of @ in equation (6) and evaluating with the 
appropriate normalized relativistic equilibrium distribution function (3). it is straightforward 
to obtain the perturbed part of the distribution function as follows: 

s f; = -- + E’ v, f,’ + A [ [ -- (L) I v .I d3ululfo(u) dQu,,m+2c2yAu m c  i a  
kT B ~ V ~ W + Z  m+ax kT 

where U represents the relative velocity of the system of interacting particles and, as usual 
[71, A[ 1 stands for the symbol 

(9) AA = A - A‘. 

3. Transport coefficients 

On taking the velocity moment and solving the appropriate integral in the centre of mass 
and relative velocity frame we find the collisional diffusion drift velocity U d  in the form 

where 

We introduce and define the following: 

and 

with z z+ and z’ z - .  
The first term of equation (10) is the well known E x B drift velocity 

E x B  v, = c- 
R2 ’ 
I 

Note that while evaluating the above results we have made use of the following s t a n h d  
integrals and recurrence relation connecting derivatives of K,(z) [14], 

jm exp[-z cosh81 cosh n8 d8 = K,(z )  (15) 
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and 
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(17) 

Following the usual classical Spitzer method [7,12,13], we obtain an analytic expression 

d 
dz 

z-K.(z) - nK,(z) = -zK"+I(z). 

for the current density J :  

1 
llLR 

where the modified EMF 

J = - E ' - h R V ( k T ) x B  (18) 

1 
E' = E + - ~ d  x B (19) 

C 

and the electrical resistivity 

It is imperative to note here that Van Erkelens and Van Leeuwen [ 151 obtained expressions 
for electrical conduction coefficients of ternary and quaternary mixtures in tenns of 
complicated vectorial brackets expressed in integral forms. However, by substituting n3 = 0 
in the equation (3.24) of Van Erkelens and Van Leeuwen, one can recover the value of the 
electrical conductivity which is analogous to that in the present paper, and recognized by 
Braams and Karney [ll]. Klimov et al [16] derived an expression for relativistic beam 
conducting of argon plasma U(?-, t )  in terms of beam current density j b ( T ,  t )  and plasma 
current density j p ( T ,  t )  in integral form only. However, specific conclusive results for 
fully-ionized relativistic plasma have not been attempted. The result (2.0) is significantly 
evaluated to yield the conductivity of a fully-ionized, two-component relativistic plasma 
diffusing across a magnetic field over a broad range of temperature. 

The thermoelectric coefficient h~ appearing in (IS) is given by 

3 R(z,z') N c  hR = -2-- 
16 M(z, z') B2 ' 

The heat flow vector is calculated in the usual classical Spitzer way [7,12,13] to the first 
order in 01 and p ,  in the direction of gradients and relative to the frame u d  as 

with the thermal conductivity K R  given by 

It is observed that the dominant contribution to the thermal conductivity is from ion-ion 
collisions. 

Further, we employ desired approximations [17,18] for K,(z) relevant to non- 
relativistic, (e, z' > 1) moderately-relativistic (z, z' >> 1) and ultra-relativistic (z, z' << 1) 
temperature regimes in the above results and obtain corresponding expressions for different 
transport coefficients, valid for different temperature regimes. 
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4. Non-relativistic and weakly-relativistic approximations 

In the non-relativistic temperature regime, i.e. when z, z’ >> 1 and K,(z) is approximated 
as K,(z) N (r/2z)1/2exp(-z), equations (12) and (13) reduce to M(z,z‘) N 1 and 
R(z,z’) Y 4, respectively. On further combining these results in equations (ZO), (21) 
and (23), it is straightforward to recover the classical results of transport coefficients, i.e. 
the electrical resistivity 

the thermoelectric coefficient 
3 NcZ A=-- 
4 B2 

and the thermal conductivity 

These results are applied to the plasmas which occur in laboratory diagnostic problems. 
In nature, these are also abundantty visible in ionospheric plasmas, solar coronas, flares or 
shock waves and so on. 

To deal with a situation arising from a plasma having a weakly- or moderately-relativistic 
temperature regime we consider the electrons to be relativistic (z’ 2 1) while the ions still 
retain the classical character (z >> 1). The approximated value of the Bessel function of 
second kind K,(z’) with argument z‘ approximates the limit, i.e. 

On employing the above formulae, equations (12) and (13) are easily reduced to the 
simplified forms as follows: 

and 

respectively. 
On further combining the above expressions with equations (ZO), (21) and (23), we 

can derive explicit formulae concerning the relevant transport coefficients in terms of the 
dimensionless constants z and z’ to be valid for the plasmas governed by a weakly- or 
moderately-relativistic temperature limit. 

The electrical resistivity, thus, assumes the form: 

Equivalently, ( q ~ ~ ) - l  leads to the expression for electrical conductivity. The thermoelecUic 
coefficient is represented by 
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while the thermal conductivity is as follows: 

J N Mohonty and K C Baral 

Equations (29H3 1) essentially reveal that the transport coefficients of interest are largely 
influenced by z and z', the dimensionless physical quantities that characterize the plasma 
species in an appropriate moderately-relativistic thermal regime. Note that the expression 
for electrical conductivity v;; which can be obtained as the reciprocal of (29) is analogous 
to that obtained by Van Erkelens and Van Leeuwen [15] by putting n3 = 0 in their relevant 
expression for a ternary plasma based on a lowest-order variational treatment. Such analogy 
or equivalence is also recognized by Braams and Kamey (equation (42). p 1363 of 1111) 
although they have analysed a Fokker-Planck velocity differential approach. Essentially, 
though the order of our expression (29) with regard to z' is the same as that of [ l l ,  151, 
slight numerical mismatch is inevitable owing to differences in collisional formalism or 
methodology. 

Furthermore, it is true that [I51 deals with cosmological plasmas and the related 
formulations concerning diffusion and transport processes, especially in a ternary or 
quarternary plasma species. To achieve this end, only vectorial bracket forms or integral 
forms of representations have been shown in respect of electrical conductivity (see abstract, 
and the relevant equation (3.24) of [I51 where on putting n3 = 0. and on employing @.12), 
@.16), (D.17) and (D.18) with some algebra one can recover the relevant formula for a 
binary plasma). 

However, similar expressions can hardly be available in respect to thermal conductivity, 
e.g. see equations (2.26) and (2.27) in [I51 which have been left alone in terms of integral 
form i.e. B k ,  and functional form i.e. Y$) representation in a suggestive manner. In fact, 
no Vectorial bracket form has been developed unlike the former. 

Quantitatively, if z' approaches the limits, i.e. 1, 10 and lo2, the corresponding values 
of M(z, 2') approximate to the limits 0.26, 0.826 and 0.98, respectively. Evidently, the 
above function M(z, z') and its numericals display the nature of the coefficient (electrical 
resistivity VIR) covered in the approximate temperature limits. Owing to the factor (kT)-3'2, 
the above coefficient markedly diminishes from 1.0 x to 5.8 x Q cm as the 
temperature increases from 10 keV to 1 GeV. Note that we have assumed the magnetic 
field strength (8)  as 10 G and the density of plasma species N = IO" where z' lies 
in the limit IO2. However, for the strong magnetic field, i.e. B = 2 x lo4 G, the electrical 
resistivity decreases from 2.06 x to 1.2 x S2 cm in the above thermal energy 
limits. This apparent decrease is caused largely as a result of the rise in temperature and 
therefore the effect of strong magnetic field included in the modified Coulomb logarithm is 
negligibly small (see figure l (a )  and l (b)) .  

Similarly, when z' takes the limiting values such as 1, 10 and IO2, the corresponding 
estimates pertaining to the coefficients AR (thermoelecnic coefficient) and KR (thermal 
conductivity) register increasing trends with increasing values of z'. As an example, although 
the latter decreases from 1.4 x 10" to 8.4 x lOIp cals cm-' s-' K-' for z' = 1 and B = 10 G 
as the temperature regime increases from 10 keV to 1 GeV the former remains independent 
of temperature. Similar variations of K R  are obvious for different values of z'. However, 
both the coefficients vary inversely as the square of the magnetic field strength B .  

The above results, no doubt, find numerous practical applications in laboratory devices 
such as w-heating in tandem mirrors, laser induced heating of plasmas, including fusion 
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Figure 1. Schematic variation of electrical resistivity VIR wilh thermal energy kT in moderately- 
relativistic fully-ionized magnetoplasma. (a) denotes the variation of VIR for B = 10 G; (b) 
denotes the variation of ~ L R  for B = 2 x 10' G (strong field). 

pellets like D-T implosion or plasmas in fusion reactors, and the other relativistic plasmas 
of physical and astrophysical interest. 

5. Ultra-relativistic limit 

Next, in the ultra-relativistic thermal regimes, we approximate the modified Bessel functions 
of the second kind for the argument 
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On further employing the above approximation in equations (12) and (13) we readily obtain 
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and 

respectively. 

governed by ultra-relativistic temperature limits, i.e. the electrical resistivity 
We next combine these values to obtain the transport coefficient relevant to plasmas 

the thermoelectric coefficient 
Nc 

h = 5.8- 
BZ 

and the thermal conductivity 

Quantitatively, if z and z’ approach the limits, i.e. IO-’ and the ultra-relativistic 
correction factor log z correspondingly introduces an estimate to the extent of -2 x IO-’ 
and -9.5 x respectively; thereby appreciably decreasing the coefficients (35) and (37). 
The diminishing trend of ~ L R  and KR in this ultra-relativistic temperature limit is exactly 
analogous to that of the preceding case, the i.e. moderately-relativistic temperature regime. 
However, the trend appears to be somewhat more drastic. 

In comparison with the preceding moderately-relativistic case the diminishing trends of 
the physical quantities such as the coefficients ~ L R  and KR are shikingly more drastic. The 
electrical resistivity VlR decreases from 2.4 x C2 cm and the thermal 
conductivity KR sharply diminishes from 8.2 x IOl3 to 1.2 x IO9 cal cm-’ s-I K-I as kT 
increases from 10 GeV to 100 GeV with B = 10 G. 

In summary, we have developed a formalism for the relativistic collisional Boltzmann 
transport equation in the binary Coulomb collision theory valid for weakly-coupled, fully- 
ionized, semi-classical plasma. A modified Chapman-Enskog method has been employed 
to solve the collisional flux integrals and derive relevant expressions for different diffusion 
transport coefficients in relativistic theory, i.e. the E x B drift, electrical resistivity, 
thermoelechic coefficient and thermal conductivity covering all ranges of temperatures. 
Our expression for electrical conductivity (Vi$’ does correspond to that of (15) valid 
for lowest-state variational treatment in an analogous manner. It is identified only in the 
weakly- or moderately-relativistic temperature regime. The profi!es of the above transport 
coefficients excluding the E x  33 drift velocity (which is independent of thermal energy) are 
graphically displayed (figures 1-3). These coefficients decrease significantly with increasing 
temperature. 

Our generalized and unified model uniquely recovers three limiting cases of 
approximation, i.e. non-relativistic, weakly- or moderately-relativistic and ultra-relativistic 
temperature regime limits especially in the giga electron-volt range of energies. Exact 
calculations in the qualitative and quantitative discussions guarantee that the formalism 
does extract sufficient data for various observational situations. We believe that our 
model unravels more fundamental aspects of binary Coulomb interactions in a more 

to 2.4 x 
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F i p  3. Schematic v d o a  of thermal canductiviry XR with the thermal energy (kT) 
in moderately relativistic mngnetoplasma. The full e w e s  denote the variation of K~ for 
B = 2 x IO4 G (strong held): the broken curves denote the variation for B = 2 x IO3 G; 
the dotted curyes denote the variation for B = 10 G. 

easily accessible manner than any of the earlier works reported so far, and further the 
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model formulates and derives the relevant coefficients explicitly for all the tbree. important 
temperature regimes for the first time. Thus the paper embodies all the thermal regimes 
that have significant geophysical and global applications of natural plasmas and the explicit 
binary interaction phenomena. 
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